Abstract
Query rewriting is a prominent reasoning technique in ontology-based data access applications. A wide variety of query rewriting algorithms have been proposed in recent years and implemented in highly optimised reasoning systems. Query rewriting systems are complex software programs; even if based on provably correct algorithms, sophisticated optimisations make the systems more complex and errors become more likely to happen. In this paper, we present an algorithm that, given an ontology as input, synthetically generates ``relevant'' test queries. Intuitively, each of these queries can be used to verify whether the system correctly performs a certain set of ``inferences'', each of which can be traced back to axioms in the input ontology. Furthermore, we present techniques that allow us to determine whether a system is unsound and/or incomplete for a given test query and ontology. Our evaluation shows that most publicly available query rewriting systems are unsound and/or incomplete, even on commonly used benchmark ontologies; more importantly, our techniques revealed the precise causes of their correctness issues and the systems were then corrected based on our feedback. Finally, since our evaluation is based on a larger set of test queries than existing benchmarks, which are based on hand-crafted queries, it also provides a better understanding of the scalability behaviour of each system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.