Abstract

Computing technologies populating high-performance computing (HPC) clusters are getting more and more diverse, offering a wide range of architectural features. As a consequence, efficient programming of such platforms becomes a complex task. In this paper we provide a micro-benchmarking of three HPC clusters based on different CPU architectures, predominant in the Top500 ranking: x86, Armv8 and IBM Power9. On these platforms we study a production fluid-dynamics application leveraging different compiler technologies and micro-architectural features. We finally provide a scalability study on state-of-the-art HPC clusters. The two most relevant conclusions of our study are: i) Compiler development is critical for squeezing performance out of most recent technologies; ii) Micro-architectural features such as Single Instruction Multiple Data (SIMD) units and Simultaneous Multi-Threading (SMT) can impact the overall performance. However, a closer look shows that while SIMD is improving the performance of compute bound regions, SMT does not show a clear benefit on HPC workloads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.