Abstract

Accurate calculations of NMR indirect nuclear spin-spin coupling constants require especially optimized basis sets and correlated wave function methods such as CCSD or SOPPA(CCSD). Both methods scale as N(6), where N is the number of orbitals, which prevents routine applications to molecules with more than 10-15 nonhydrogen atoms. We have therefore developed a modification of the SOPPA(CCSD) method in which the CCSD singles and doubles amplitudes are replaced by CC2 singles and doubles amplitudes. This new method, called SOPPA(CC2), scales only as N(5), like the original SOPPA-method. The performance of the SOPPA(CC2) method for the calculation of indirect nuclear spin-spin coupling constants is compared to SOPPA and SOPPA(CCSD) employing a set of benchmark molecules. We also investigate the basis set dependence by employing three different basis sets optimized for spin-spin coupling constants, namely the HuzIV-su4, ccJ-pVTZ, and ccJ-pVQZ basis sets. The results of the corresponding CCSD calculations are used as a theoretical reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.