Abstract

In this work, continuum kinetic formulations are employed as a mechanism to include closure physics in an extended magnetohydrodynamics model. Two continuum kinetic approaches have been implemented in the plasma fluid code NIMROD [Sovinec et al., “Nonlinear magnetohydrodynamics with high-order finite elements,” J. Comput. Phys. 195, 355 (2004)] including a Chapman–Enskog-like (CEL) formulation and a more conventional δf approach. Ion kinetic closure schemes are employed to describe the neoclassical flow properties in axisymmetric toroidal geometry. In particular, predictions for steady-state values of poloidal flow profiles in tokamak geometry are provided using both the δf formulation and two different solution techniques for the CEL approach. These results are benchmarked against analytic theory predictions as well as results from the drift kinetic code DK4D. The continuum kinetic formulations employed here show agreement with both the analytic theory and DK4D results, and offer a novel velocity space representation involving higher-order finite elements in pitch angle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call