Abstract

The Variational Quantum Eigensolver (VQE) is a promising algorithm for Noisy Intermediate Scale Quantum (NISQ) computation. Verification and validation of NISQ algorithms' performance on NISQ devices is an important task. We consider the exactly-diagonalizable Lipkin-Meshkov-Glick (LMG) model as a candidate for benchmarking NISQ computers. We use the Bethe ansatz to construct eigenstates of the trigonometric LMG model using quantum circuits inspired by the LMG's underlying algebraic structure. We construct circuits with depth $\mathcal{O}(N)$ and $\mathcal{O}(\log_2N)$ that can prepare any trigonometric LMG eigenstate of $N$ particles. The number of gates required for both circuits is $\mathcal{O}(N)$. The energies of the eigenstates can then be measured and compared to the exactly-known answers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.