Abstract
Machine learning methods for multi-target regression (MTR) rely on the hypothesis that an inter-target correlation can improve predictive performance. In the last years, many MTR methods were developed, but there are still questions about how their performances are influenced by the datasets characteristics such as linearity, number of targets, and inter-correlation complexity. Aiming at contributing to the understanding of the relationship between the dataset properties and MTR methods, we generated 33 synthetic datasets with controlled characteristics and tested their performance with single-target and six MTR methods. The results showed that MTR methods were able to improve performance even in datasets whose targets were not linearly correlated among them, but the predictive improvement differed among the combinations of method/regressor according to the dataset composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.