Abstract

Motivated by the deployment of multi-legged walking robots in traversing various terrain types, we benchmark existing online and unsupervised incremental learning approaches in traversal cost prediction. The traversal cost is defined by the proprioceptive signal of the robot traversal stability that is combined with appearance and geometric properties of the traversed terrains to construct the traversal cost model incrementally. In the motivational deployment, such a model is instantaneously utilized to extrapolate the traversal cost for observed areas that have not yet been visited by the robot to avoid difficult terrains in motion planning. The examined approaches are Incremental Gaussian Mixture Network, Growing Neural Gas, Improved Self-Organizing Incremental Neural Network, Locally Weighted Projection Regression, and Bayesian Committee Machine with Gaussian Process Regressors. The performance is examined using a dataset of the various terrains traversed by a real hexapod walking robot. A part of the presented benchmarking is thus a description of the dataset and also a construction of the reference traversal cost model that is used for comparison of the evaluated regressors. The reference is designed as a compound Gaussian process-based model that is learned separately over the individual terrain types. Based on the evaluation results, the best performance among the examined regressors is provided by Incremental Gaussian Mixture Network, Improved Self-Organizing Incremental Neural Network, and Locally Weighted Projection Regression, while the latter two have the lower computational requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call