Abstract

We demonstrate a high-throughput density functional perturbation theory (DFPT) methodology capable of screening compounds for their dielectric properties. The electronic and ionic dielectric tensors are calculated for 88 compounds, where the eigenvalues of the total dielectric tensors are compared with single crystal and polycrystalline experimental values reported in the literature. We find that GGA/PBE has a smaller mean average deviation from experiments ($\text{MARD}=16.2$%) when compared to LDA. The prediction accuracy of DFPT is lowest for compounds that exhibit complex structural relaxation effects (e.g., octahedra rotation in perovskites) and/or strong anharmonicity. Despite some discrepancies between DFPT results and reported experimental values, the high-throughput methodology is found to be useful in identifying interesting compounds by ranking. This is demonstrated by the high Spearman correlation factor $(\ensuremath{\rho}=0.92)$. Finally, we demonstrate that DFPT provides a good estimate for the refractive index of a compound without calculating the frequency dependence of the dielectric matrix ($\text{MARD}=5.7$%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.