Abstract

In this paper, we benchmark five state-of-the-art trackers on aerial platform videos: Multi-domain Convolutional Neural Network (MDNET) tracker, which was the winner of the VOT2015 tracking challenge, the Fully Convolutional Neural network Tracker (FCNT), the Spatially Regularized Correlation Filter (SRDCF) tracker, the Continuous Convolution Operator Tracker (CCOT) tracker, which was the winner of the VOT2016 challenge, and the Tree structure Convolutional Neural Network (TCNN) tracker. We assess performance in terms of both tracking accuracy and processing speed based on two sets of videos: a subset of the OTB dataset where the cameras are located at a high vantage point and a new dataset of aerial videos captured by a moving platform. Our results indicate that these trackers performed as expected for the videos in the OTB subset, however, tracker performance degraded significantly in aerial videos due to target size, camera motion and target occlusions. The CCOT tracker yielded the best overall performance in terms of accuracy, while the SRDCF tracker was the fastest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.