Abstract
The purpose of this study is proposing a hybrid data mining solution for traveler segmentation in tourism domain which can be used for planning user-oriented trips, arranging travel campaigns or similar services. Data set used in this work have been provided by a travel agency which contains flight and hotel bookings of travelers. Initially, the data set was prepared for running data mining algorithms. Then, various machine learning algorithms were benchmarked for performing accurate traveler segmentation and prediction tasks. Fuzzy C-means and X-means algorithms were applied for clustering user data. J48 and multilayer perceptron (MLP) algorithms were applied for classifying instances based on segmented user data. According to the findings of this study, J48 has the most effective classification results when applied on the data set which is clustered with X-means algorithm. The proposed hybrid data mining solution can be used by travel agencies to plan trip campaigns for similar travelers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.