Abstract

Distributed data flow systems such as Apache Spark or Apache Flink are popular choices for scaling machine learning algorithms in production. Industry applications of large scale machine learning such as click-through rate prediction rely on models trained on billions of data points which are both highly sparse and high-dimensional. Existing Benchmarks attempt to assess the performance of data flow systems such as Apache Flink, Spark or Hadoop with non-representative workloads such as WordCount, Grep or Sort. They only evaluate scalability with respect to data set size and fail to address the crucial requirement of handling high dimensional data.We introduce a representative set of distributed machine learning algorithms suitable for large scale distributed settings which have close resemblance to industry-relevant applications and provide generalizable insights into system performance. We implement mathematically equivalent versions of these algorithms in Apache Flink and Apache Spark, tune relevant system parameters and run a comprehensive set of experiments to assess their scalability with respect to both: data set size and dimensionality of the data. We evaluate the systems for data up to four billion data points and 100 million dimensions. Additionally we compare the performance to single-node implementations to put the scalability results into perspective.Our results indicate that while being able to robustly scale with increasing data set sizes, current state of the art data flow systems are surprisingly inefficient at coping with high dimensional data, which is a crucial requirement for large scale machine learning algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.