Abstract

In this paper we evaluate 2 cellular genetic algorithms (CGAs), a single-population genetic algorithm, and a hill-climber on the Black Box Optimization Benchmarking testbed. CGAs are fine grain parallel genetic algorithms with a spatial structure imposed by embedding individuals in a connected graph. They are popular for their diversity-preserving properties and efficient implementations on parallel architectures. We find that a CGA with a uni-directional ring topology outperforms the canonical CGA that uses a bi-directional grid topology in nearly all cases. Our results also highlight the importance of carefully chosen genetic operators for finding precise solutions to optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.