Abstract

We study connections between the alternating direction method of multipliers (ADMM), the classical method of multipliers (MM), and progressive hedging (PH). The connections are used to derive benchmark metrics and strategies to monitor and accelerate convergence and to help explain why ADMM and PH are capable of solving complex nonconvex NLPs. Specifically, we observe that ADMM is an inexact version of MM and approaches its performance when multiple coordination steps are performed. In addition, we use the observation that PH is a specialization of ADMM and borrow Lyapunov function and primal-dual feasibility metrics used in ADMM to explain why PH is capable of solving nonconvex NLPs. This analysis also highlights that specialized PH schemes can be derived to tackle a wider range of stochastic programs and even other problem classes. Our exposition is tutorial in nature and seeks to to motivate algorithmic improvements and new decomposition strategies

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.