Abstract
Accurate potential energy curves (PECs) are determined for the twenty-two electronic states of LiRb. In contrast to previous studies, the applied approach relies on the first principle calculations involving correlation among all electrons. The current methodology is founded on the multireference coupled cluster (CC) scheme constructed within the Fock space (FS) formalism, specifically for the (2,0) sector. The FS methodology is established within the framework of the intermediate Hamiltonian formalism and offers an intruder-free, efficient computational scheme. This method has a distinctive feature that, when applied to the doubly ionized system, provides the characteristics of the neutral case. This proves especially beneficial when investigating PECs in situations where a closed-shell molecule dissociates into open-shell fragments, yet its double positive ion forms closed-shell species. In every instance, we successfully computed continuous PECs spanning the entire range of interatomic distances, from the equilibrium to the dissociation limit. Moreover, the spectroscopic characteristic of various electronic states is presented, including relativistic effects. Relativistic corrections included at the third-order Douglas-Kroll level have a non-negligible effect on the accuracy of the determined spectroscopic constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.