Abstract
Predictive maintenance and condition-based monitoring technique used to monitor the health of bearings, pumps, turbine rotors, gearboxes, etc. It uses the idea of data mining, statistical analysis, and machine learning technique to accurately predict early fault of mechanical components and calculate the remaining useful life. The paper is about condition-based health monitoring of heavy engineering equipment and their predictive maintenance. Data is gathered from the bearing of our experimental setup using unsupervised learning on type of failure and remaining useful life should be determined to predict the maintenance of a machine. In this paper, we consider a data collected from the bearing and fit different unsupervised learning algorithm, gaussian mixture model and clustering technique to check its performance, accuracy, and sturdiness. In conclusion, we have proposed a methodology to benchmark different algorithm techniques and select the best one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.