Abstract

The extension of the frozen-density embedding theory for nonvariational methods [J. Chem. Theory Comput. 2020, 16, 6880] was utilized to evaluate intermolecular interaction energies for complexes in the Zhao-Truhlar basis set. In the applied method (FDET-MP2-FAT-LDA), the same auxiliary system is used to evaluate the correlation energy by means of the second-order Møller-Plesset perturbation theory (MP2), as in our previous work [J. Chem. Phys. 2019, 150, 121101]. Local density approximation is used for ExcTnad[ρA,ρB] in both cases. Additionally, the contribution to the energy due to the neglected correlation potential was evaluated and analyzed. The domain of applicability of the local density approximation for ExcTnad[ρA,ρB] was determined based on deviations from the interaction energies from the conventional MP2 calculations. The local density approximation for ExcTnad[ρA,ρB] performs well for hydrogen- or dipole-bound complexes. The relative errors in the interaction energy lie within 3-30%. While for charge-transfer complexes, this approximation fails consistently, and for other types of complexes, the performance of this approximation is not systematic. The sources of error are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.