Abstract

Nowadays, solar resource estimation via clear-sky models is widely accepted when correctly validated with on ground records. In the past, different approaches have been proposed in order to determine clear-sky periods of solar radiation on-ground records: visual inspection of registers, discretization via a threshold value of clear sky index, and correlation with estimated clear sky solar irradiation. However, due to the fact that the process must be automated and the need for universality, the search for clear-sky conditions presents a challenging feat. This study proposes a new algorithm based on the persistent value of the Linke turbidity in conjunction with a transitory filter. The determinant of the correlation matrix of estimated clear-sky solar irradiance and measured irradiance is calculated to distinguish between days under clear-sky conditions and cloudy or overcast days. The method was compared and proved superior against a review of other 10 commonly used techniques at 21 sites of the Baseline Surface Radiation Network, which includes diverse climates and terrain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.