Abstract

Benchmark analysis is a general risk estimation strategy for identifying the benchmark dose (BMD) past which the risk of exhibiting an adverse environmental response exceeds a fixed, target value of benchmark response (BMR). Estimation of BMD and of its lower confidence limit (BMDL) is well understood for the case of an adverse response to a single stimulus. In many environmental settings, however, one or more additional, secondary, qualitative factor(s) may collude to affect the adverse outcome, such that the risk changes with differential levels of the secondary factor. This paper extends the single-dose BMD paradigm to a mixed-factor setting with a secondary qualitative factor possessing two levels. With focus on quantal-response data and using a generalized linear model with a complementary-log link function, we derive expressions for BMD and BMDL. We study the operating characteristics of six different multiplicity-adjusted approaches to calculate the BMDL, using Monte Carlo evaluations. We illustrate the calculations via an example data set from environmental carcinogenicity testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.