Abstract

There is considerable variability in the published lethality values for inhalation exposures of Bacillus anthracis. The lack of consensus on an acceptable dose-response relationship poses a significant challenge in the development of risk-based management approaches for use following a terrorist release of B. anthracis spores. This article reviewed available B. anthracis dose-response modeling and literature for the nonhuman primate, evaluated the use of the U.S. Environmental Protection Agency's Benchmark Dose Software (BMDS) to fit mathematical dose-response models to these data, and reported results of the benchmark dose analysis of suitable data sets. The BMDS was found to be a useful tool to evaluate dose-response relationships in microbial data, including that from B. anthracis exposure. An evaluation of the sources of variability identified in the published lethality data and the corresponding BMDS-derived lethality values found that varying levels of physical characterization of the spore product, differing receptor-specific exposure assumptions, choice of dose metrics, and the selected statistical methods all contributed to differences in lethality estimates. Recognition of these contributors to variability could ultimately facilitate agreement on a B. anthracis dose-response relationship through provision of a common description of necessary study considerations for acceptable dose-response data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.