Abstract

Handwritten document image dataset is one of the basic necessities to conduct research on developing Optical Character Recognition (OCR) systems. In a multilingual country like India, handwritten documents often contain more than one script, leading to complex pattern analysis problems. In this paper, we highlight two such situations where Devanagari and Bangla scripts, two most widely used scripts in Indian sub-continent, are individually used along with Roman script in documents. We address three key challenges here: 1) collection, compilation and organization of benchmark databases of images of 150 Bangla-Roman and 150 Devanagari-Roman mixed-script handwritten document pages respectively, 2) script-level annotation of 18931 Bangla words, 15528 Devanagari words and 10331 Roman words in those 300 document pages, and 3) development of a bi-script and tri-script word-level script identification module using Modified log-Gabor filter as feature extractor. The technique is statistically validated using multiple classifiers and it is found that Multi-Layer Perceptron (MLP) classifier performs the best. Average word-level script identification accuracies of 92.32%, 95.30% and 93.78% are achieved using 3-fold cross validation for Bangla-Roman, Devanagari-Roman and Bangla-Devanagari-Roman databases respectively. Both the mixed-script document databases along with the script-level annotations and 44790 extracted word images of the three aforementioned scripts are available freely at https://code.google.com/p/cmaterdb/ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.