Abstract

We present benchmark energetic data for the HCOOH···benzene complexes. The benchmark data were determined by a composite approach based on CCSD(T) calculations. Final binding energies (kcal/mol) are in the range of 1.6-4.8 kcal/mol, and they were used as reference data to test density functionals in the literature. Among the tested local density functionals without empirical dispersion corrections, M06-L is the best performing functional, and M06-L/6-31+G(d,p) gives a mean unsigned error (MUE) of only 0.15 kcal/mol. PBEsol and SOGGA also show promising performance. The best local DFT-D methods are BLYP-D and PBEsol-D, and they give an MUE of 0.15 kcal/mol after removing basis set superposition errors by the counterpoise approach. Empirical dispersion corrections greatly improve the descriptions of noncovalent interactions in HCOOH···benzene dimers. The calculated benchmark data and intermolecular potential are useful for the parametrizations of new force fields and coarse-grained models for chemical species such as the acrylic polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.