Abstract

Reducing the size of metal nanoparticle (NP) cocatalyst down to single-atom level to improve photocatalytic efficiency is inevitably accompanied by the changes of its coordination environment, geometric configuration, electronic structure and active site. Thus, the construction of single metal atom (SA) photocatalyst is not necessarily a panacea for activity improvement toward target catalytic reactions. Herein, we report a critical and benchmark comparison in a reasonable framework of ZnIn2S4/Pt NP (ZIS/Pt NP) and ZnIn2S4/Pt SA (ZIS/Pt SA) towards photocatalytic hydrogen (H2) evolution, aiming to demonstrate which is better between Pt NP and Pt SA as cocatalyst in boosting photoredox catalysis. Mechanism study proves that the higher charge separation/transfer and weaker H* adsorption strength over ZIS/Pt NP than ZIS/Pt SA promote the more effective reduction of protons to H2, leading to the higher activity of ZIS/Pt NP than ZIS/Pt SA. Our work is expected to timely inspire the critical and rational thinking on the function and intrinsic mechanism of SA and NP cocatalysts in enhancing the photoredox catalysis performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.