Abstract

We present a computationally efficient implementation of double-hybrid density functional theory (DH-DFT) leveraging the dual basis methods of Head-Gordon and co-workers and the resolution-of-the-identity second-order Møller-Plesset (RI-MP2) theory. The B2PLYP, B2GP-PLYP, DSD-BLYP and DSD-PBEP86 density functionals are applied to assess the performance of dual-basis methods on several benchmark test cases, including the CONF set of conformational energy differences in C4-C7 alkanes, the S22 set of noncovalent interaction energies, and the RGC10 noble-gas dimer dissociation curves. The dual-basis DH-DFT approach is shown to give results in excellent agreement with conventional methods at a reduced computational cost. For noncovalent interaction energies, DH-DFT is compared against a leading neural-network-based approach, namely the SNS-MP2 method of McGibbon and coworkers (McGibbon et al., 2017). The DH-DFT and SNS-MP2 methods are shown to produce similar accuracies when compared to the established benchmark values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call