Abstract

In this work, a series of Co3O4 spinels were produced by different synthesis routes (precipitation, solution combustion synthesis, and hard template method), and were used as non-noble catalysts for the oxygen evolution reaction (OER) under basic conditions. The investigated catalysts have a proportional relation between electrochemical activity, surface roughness, and specific surface area. The hard template synthesis method resulted in the most active catalyst compared in this work, which we ascribe to its highly porous structure, and concomitant Co3+/Co4+ redox couple at a lower potential, attributed to the OER. The most performant catalyst was compared with a commercial catalyst (Ni@NiO, Alfa Aesar) showing only 0.01 V overpotential difference, evaluated at 10 mA cm− 2 (overpotential 0.44 V).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.