Abstract
The computational tools available for prediction of sound propagation through the atmosphere have increased dramatically during the past decade. The numerical techniques include analytical solutions for selected index of refraction profiles, ray trace techniques which include interaction with a complex impedance boundary, a Gaussian beam ray trace algorithm, and more sophisticated approximate solutions to the full wave equation; the fast field program (FFP) and the parabolic equation (PE) solutions. This large array of computational approaches raises questions concerning under what conditions the various approaches are reliable and concerns about possible errors in specific implementations. This paper presents comparisons of predictions from the several models assuming a complex impedance ground and four atmospheric conditions. For the cases studied, it was found that the FFP and PE algorithms agree to within numerical accuracy over the full range of conditions and agree with the analytical solutions where available. Comparisons to ray solutions define regimes where ray approaches can be used. There is no attempt to compare calculated transmission losses to measurements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.