Abstract

We report benchmark calculations of the energy per particle of pure neutron matter as a function of the baryon density using three independent many-body methods: Brueckner-Bethe-Goldstone, Fermi hypernetted chain/single-operator chain, and auxiliary-field diffusion Monte Carlo. Significant technical improvements are implemented in the latter two methods. The calculations are made for two distinct families of realistic coordinate-space nucleon-nucleon potentials fit to scattering data, including the standard Argonne $v_{18}$ interaction and two of its simplified versions, and four of the new Norfolk $\Delta$-full chiral effective field theory potentials. The results up to twice nuclear matter saturation density show some divergence among the methods, but improved agreement compared to earlier work. We find that the potentials fit to higher-energy nucleon-nucleon scattering data exhibit a much smaller spread of energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.