Abstract

The creation of diluted magnetic semiconductors (DMSs) at lower dimensions that exhibit room temperature ferromagnetism (RTFM) has been given immense significance for the fabrication of a new class of spintronic devices through utilizing spin degrees of freedom besides charge nature of electrons. In this view, nanocrystals of ZnS doped with 4% concentration of Fe, Co, Ni, Cr, Mn, Sr, Cu, and Ce have been synthesized at room temperature (RT) by chemical co-precipitation method. The samples were examined by various characterization techniques like energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and photoluminescence (PL). EDS spectra revealed the existence of parent elements in the prepared samples. XRD characterization disclosed hexagonal structures of nanocrystals, and no secondary phases were observed in all the samples except for Cu and Ni doped ZnS. FTIR data confirmed the proper substitution of dopants in the host lattice as all the graphs have almost same stretchings. The magnetic nature of each sample was evaluated from M-H graphs of VSM, and it corroborated the transition of magnetic properties due to doping. Pristine ZnS showed diamagnetic nature, while Fe and Sr doped ZnS evinced strong ferromagnetic and anti-ferromagnetic properties, respectively. Photoluminescence studies on Ce, Sr and Mn doped ZnS samples revealed strong emission peaks with enhanced luminescence properties compared to bare ZnS. Cu, Cr and Mn doped ZnS exhibited a red shift in emission wavelengths, whereas Co doped ZnS showed emission peak shifted towards the blue region as compared to the host lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.