Abstract

This study deals with the neutronic analysis of the current core configuration of a 3-MW TRIGA MARK II research reactor at Atomic Energy Research Establishment (AERE), Savar, Dhaka, Bangladesh and validation of the results by benchmarking with the experimental, operational and available Final Safety Analysis Report (FSAR) values. The 3-D continuous-energy Monte Carlo code MCNP4C was used to develop a versatile and accurate full-core model of the TRIGA core. The model represents in detail all components of the core with literally no physical approximation. All fresh fuel and control elements as well as the vicinity of the core were precisely described. Continuous energy cross-section data from ENDF/B-VI and ENDF/B-V and S(α,β) scattering functions from the ENDF/B-VI library were used. The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics was established by benchmarking the TRIGA experiments. The effective multiplication factor, power distribution and peaking factors, neutron flux distribution, and reactivity experiments comprising control rod worths, critical rod height, excess reactivity and shutdown margin were used in the validation process. The MCNP predictions and the experimentally determined values are found to be in very good agreement, which indicates that the simulation of TRIGA reactor is treated adequately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call