Abstract

Since most common diseases have been shown to be influenced by inherited variations in our genes, completion of the Human Genome Project and mapping of the human genome single-nucleotide polymorphisms will have a tremendous impact on our approach to medicine. New developments in genotyping techniques and bioinformatics, enabling detection of single-nucleotide polymorphisms, already provide physicians and scientists with tools that change our understanding of human biology. In the near future, studies will relate genetic polymorphisms to features of critical illnesses, increased susceptibility to common diseases, and altered response to therapy. Novel insights into the contribution of genetic factors to critical illnesses and advances in pharmacogenomics will be used to select the most effective therapeutic agent and the optimal dosage required to elicit the expected drug response for a given individual. Implementation of genetic criteria for patient selection and individual assessment of the risks and benefits of treatment emerges as a major challenge to the pharmaceutical industry.

Highlights

  • In 1995, the genomic sequence of the bacteria Haemophilus influenzae was the first complete genomic sequence of a free-living organism to be published [1]

  • As we enter the post genome-sequencing era, we are already facing new challenges. Successful translation of this structural knowledge into clinical benefits will depend upon our ability to relate individual genes to specific diseases, to find the genetic variations that influence an individual’s risk of becoming ill, and to use genetic information to tailor drug therapy

  • Much of the genetic variation between individuals lies in differences known as single-nucleotide polymorphisms (SNPs); a single base is swapped for an alternate, and both versions exist in the general population at frequencies greater than 1% [8]

Read more

Summary

Introduction

In 1995, the genomic sequence of the bacteria Haemophilus influenzae was the first complete genomic sequence of a free-living organism to be published [1]. Successful translation of this structural knowledge into clinical benefits will depend upon our ability to relate individual genes to specific diseases, to find the genetic variations that influence an individual’s risk of becoming ill, and to use genetic information to tailor drug therapy.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.