Abstract

Acute liver failure (ALF) and acute on chronic liver failure (AoCLF) carry a high mortality. The rationale for extracorporeal systems is to provide an environment facilitating recovery or a window of opportunity for liver transplantation. Recent technologies have used albumin as a scavenging molecule. Two different albumin dialysis systems have been developed using this principle: MARS (Molecular Adsorbent Recirculation System) and SPAD (Single-Pass Albumin Dialysis). A third system, Prometheus (Fractionated Plasma Separation and Adsorption), differs from the others in that the patient's albumin is separated across a membrane and then is run over adsorptive columns. Although several trials have been published (particularly with MARS), currently there is a lack of controlled studies with homogenous patient populations. Many studies have combined patients with ALF and AoCLF. Others have included patients with different etiologies. Although MARS and Prometheus have shown biochemical improvements in AoCLF and ALF, additional studies are required to show conclusive benefit in short- and long-term survival. The appropriate comparator is standard medical therapy rather than head-to-head comparisons of different forms of albumin dialysis.

Highlights

  • Acute liver failure (ALF) and acute on chronic liver failure (AoCLF) have a high mortality

  • The system consists of a blood circuit, an albumin circuit, and a classic ‘renal’ circuit

  • Blood is dialysed across an albuminimpregnated high-flux dialysis membrane; 600 ml of 20% human albumin in the albumin circuit acts as the dialysate

Read more

Summary

Introduction

Acute liver failure (ALF) and acute on chronic liver failure (AoCLF) have a high mortality. ALF is defined as development of severe acute liver injury with impaired hepatic synthetic function and encephalopathy in a patient without previous liver disease [1]. AoCLF is defined as acute deterioration in liver function over a 2- to 4-week period in a patient with preexisting chronic liver disease. In both conditions, the lack of the metabolic and regulatory function of the liver results in life-threatening complications that may include bleeding, renal failure, hepatic encephalopathy (HE) or cerebral edema, cardiovascular failure, and susceptibility to infections culminating in multi-organ failure [2]. The only effective therapy for patients with liver failure is liver transplantation. The liver often maintains some regenerative capacity, so the rationale for supportive therapy and extracorporeal systems is to provide an environment facilitating recovery to create or prolong a window of opportunity for liver transplantation or, in the best-case scenario, until native liver recovery occurs in ALF or a period of stability for those with AoCLF [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.