Abstract

High-spin pyridine diimine cobalt(II) bis(carboxylate) complexes have been synthesized and exhibit high activity for the hydrosilylation of a range of commercially relevant alkenes and tertiary silanes. Previously observed dehydrogenative silylation is suppressed with the use of sterically unencumbered ligands, affording exclusive hydrosilylation with up to 4000 TON. The cobalt precatalysts were readily prepared and handled on the benchtop and underwent substrate activation, obviating the need for external reductants. The cobalt catalysts are tolerant of epoxide, amino, carbonyl, and alkyl halide functional groups, broadening the scope of alkene hydrosilylation with earth-abundant metal catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.