Abstract
The feasibility of applying visible-to-UVC upconversion (UC) luminescence to enhance the kinetics of solar water disinfection was evaluated using Lu7O5F9:Pr3+ ceramics incorporated into a solar reactor containing E. coli suspensions. Inactivation was assessed in batch conditions using both laser and lens-concentrated sunlight excitation conditions. Under 840-mW argon laser excitation, the UC efficiency was estimated to be 1 order of magnitude greater than previously reported under lamp excitation and UVC emitted by the reactors resulted in 3.6-log inactivation in 20min. However, experiments using ~1500mW of concentrated natural sunlight showed no additional inactivation that could be attributed to UC within the timescale studied. Due to the fundamental and practical limitations of solar focusing, the optical concentration ratio employed herein prevented the excitation beam from achieving the power densities required to attain UC efficiencies comparable to the laser experiments. We also observed that the high intensity of both the laser and sunlight induced rapid photoreactivation by the bacteria, which detracted from net disinfection performance. The results suggest that current UC materials perform inadequately for environmental application; nonetheless, valuable qualitative and quantitative insight was gained that more explicitly defines materials development goals and considerations for application of UC to environmental technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.