Abstract

Limestone is used widely in fluidized bed energy applications for sulphur capture. The conditions of the novel fluidized bed energy processes can differ from the conditions (i.e., temperature and gas concentrations) in conventional fluidized bed applications for energy production. The influence of H2O(g) on calcination and indirect sulphation was examined with one limestone type in a bench-scale reactor. A time-dependent multilayer particle model was used for analysing the experimental results. The studied atmosphere included 0%, 10% or 20% H2O(g) and two different CO2 concentration levels (15% and 50%). The temperature level was the same in all tests (∼1188K). The added H2O(g) increased the conversion degree compared to conditions without H2O(g) in all test conditions. The model was used to explicate the observed differences between test results with and without H2O(g) and determine the conversion curve, conversion profile and magnitude of reactions and diffusion as a function of radius and time. The results show that different sulphation patterns and conversion degrees can be explained with different limitations inside the particles in terms of time and in different conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.