Abstract

In this paper, we consider pilot-aided channel estimation and equalization for single-carrier and single-carrier frequency division multiple-access (SC-FDMA) transmission over doubly-selective channels (DSC). To reduce the channel estimation (CE) parameters, the DSC is modelled using a complex-exponential basis expansion model (CX-BEM) with non-uniform BEM frequencies. We optimize the CX-BEM basis functions using CE error minimization as the objective. As a result, the channel modelling error is greatly reduced. Next, we propose a BEM-based per-survivor processing (PSP) technique and combine it with a decision-directed channel estimator to obtain a channel-tracking equalizer at the receiver. The resultant BEM-PSP receiver significantly improves the channel estimation mean square error (MSE) and the bit error rates (BER) performance in fast fading multi-path channel, thanks to the channel tracking capability embedded within its Viterbi equalizer. Finally, we employ cross-frame channel interpolation, and power distribution between the data and pilot symbols to further improve the system performance at high fading rates. Extensive simulation results show that our BEM-PSP receiver outperforms many existing methods and approaches close to an ideal receiver with perfectly known CSI under various fading scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call