Abstract

A new boundary element model for transient dynamic analysis of 2D structures is presented. The dual reciprocity method (DRM) is reformulated for the 2D elastodynamics by using the multiquadric radial basis functions (MQ). The required kernels for displacement and traction particular solutions are derived. Some terms of these kernels are found to be singular; therefore, a new smoothing technique is proposed to solve this problem. Hence, the limiting values of relevant kernels are computed. The validity and strength of the proposed formulation are demonstrated throughout several numerical applications. It is proven from the results that the present formulation is more stable than the traditional DRM, which uses the conical (1 + R) function, especially in predicting results in the far time zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.