Abstract

A new boundary element method is developed for solving thin-body thermoelastic problems in this paper. Firstly, the novel regularized boundary integral equations (BIEs) containing indirect unknowns are proposed to cancel the singularity of fundamental solutions. Secondly, a general nonlinear transformation available for high-order geometry elements is introduced in order to remove or damp out the near singularity of fundamental solutions, which is crucial for accurate solutions of thin-body problems. Finally, the domain integrals arising in both displacement and its derivative integral equations, caused by the thermal loads, are regularized using a semi-analytical technique. Six benchmark examples are examined. Results indicate that the proposed method is accurate, convergent and computationally efficient. The proposed method is a competitive alternative to existing methods for solving thin-walled thermoelastic problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.