Abstract

The generation of below-threshold harmonics in gas-jets constitutes a promising path towards optical frequency combs in the vacuum ultra-violet (VUV) spectral range. Of particular interest is the 150 nm range, which can be exploited to probe the nuclear isomeric transition of the Thorium-229 isotope. Using widely available high-power, high-repetition-rate Ytterbium-based laser sources, VUV frequency combs can be generated through the process of below-threshold harmonic generation, in particular 7th harmonic generation of 1030 nm. Knowledge about the achievable efficiencies of the harmonic generation process is crucial for the development of suitable VUV sources. In this work, we measure the total output pulse energies and conversion efficiencies of below-threshold harmonics in gas-jets in a phase-mismatched generation scheme using Argon and Krypton as nonlinear media. Using a 220 fs, 1030 nm source, we reach a maximum conversion efficiency of 1.1 × 10-5 for the 7th harmonic (147 nm) and 0.78 × 10-4 for the 5th harmonic (206 nm). In addition, we characterize the 3rd harmonic of a 178 fs, 515 nm source with a maximum efficiency of 0.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call