Abstract

The below band-gap optical-absorption characteristics of GaxIn1−xSb alloy system have been reported. The different dependencies of the hole and electron absorption mechanisms on wavelength result in significant changes of the absorption characteristics with alloy composition. In the undoped Ga-rich alloy compositions that are p type in nature (due to residual holes resulting from native defects), the inter-valence-band absorption has been found to be the dominant absorption mechanism. With decreasing Ga (increasing indium) mole fraction, the hole to electron ratio decreases for undoped samples. For such samples, absorption due to electrons becomes significant. With n-type extrinsic doping, intervalley transitions are seen for certain Ga-rich compositions, which also alter the absorption characteristics. The dependencies of various absorption mechanisms as a function of wavelength have been analyzed and discussed in this paper. Based on the theoretical analysis presented in this paper, one can calculate the extrinsic doping level necessary for each alloy composition in order to obtain high optical transparency necessary for infrared optical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.