Abstract
ABSTRACTA conditional is natural if it fulfils the three following conditions. (1) It coincides with the classical conditional when restricted to the classical values T and F; (2) it satisfies the Modus Ponens; and (3) it is assigned a designated value whenever the value assigned to its antecedent is less than or equal to the value assigned to its consequent. The aim of this paper is to provide a ‘bivalent’ Belnap-Dunn semantics for all natural implicative expansions of Kleene's strong 3-valued matrix with two designated elements. (We understand the notion ‘natural conditional’ according to N. Tomova, ‘A lattice of implicative extensions of regular Kleene's logics’, Reports on Mathematical Logic, 47, 173–182, 2012.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.