Abstract

We consider a sequential decision making problem where the agent faces the environment characterized by the stochastic discrete events and seeks an optimal intervention policy such that its long-term reward is maximized. This problem exists ubiquitously in social media, finance and health informatics but is rarely investigated by the conventional research in reinforcement learning. To this end, we present a novel framework of the model-based reinforcement learning where the agent's actions and observations are asynchronous stochastic discrete events occurring in continuous-time. We model the dynamics of the environment by Hawkes process with external intervention control term and develop an algorithm to embed such process in the Bellman equation which guides the direction of the value gradient. We demonstrate the superiority of our method in both synthetic simulator and real-data experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.