Abstract
Bell’s non-locality theorem can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the area of solid-oxide fuel cells (SOFCs). The use of samarium-doped ceria electrolytes in SOFCs lowers the open-circuit voltage (OCV) to less than the Nernst voltage. This low OCV has been explained by Wagner’s equation, which is based on chemical equilibrium theory. However, Wagner’s equation is insufficient to explain the low OCV, which should be explained by fluctuation and dissipation theorems. Considering the separation of the Boltzmann distribution and Maxwell’s demon, only carrier species with sufficient energy to overcome the activation energy can contribute to current conduction, as determined by incorporating different constants into the definitions of the chemical and electrical potentials. Then, an energy loss equal to the activation energy will occur because of the interactions between ions and electrons. This energy loss means that an additional thermodynamic law based on an advanced model of Maxwell’s demon is needed. In this report, the zero-point energy can be explained by this additional ther-modynamic law, as can Bell’s non-locality theorem.
Highlights
Solid-oxide fuel cells (SOFCs) directly convert the chemical energy of fuel gases, such as hydrogen and methane, into electrical energy
The use of samarium-doped ceria electrolytes in SOFCs lowers the opencircuit voltage (OCV) to less than the Nernst voltage. This low OCV has been explained by Wagner’s equation, which is based on chemical equilibrium theory
The low OCV has been calculated using Wagner’s equation, which is based on chemical equilibrium theory [1] [2]
Summary
Solid-oxide fuel cells (SOFCs) directly convert the chemical energy of fuel gases, such as hydrogen and methane, into electrical energy. The opencircuit voltage (OCV) of an SDC cell is approximately 0.8 V, which is lower than the Nernst voltage (Vth) of 1.15 V at 1073 K. This low OCV is attributed to the low value of the ionic transference number (tion). Equation (1) can be explained using an advanced model of Maxwell’s demon. Bell’s non-locality theorem can be local with this additional thermodynamic law
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.