Abstract

Use of shading nets helps ameliorate heat stress of vegetable crops. This study evaluated the effects of shade level on microenvironment, plant growth, leaf gas exchange, and mineral nutrient content of field-grown bell pepper crop. Bell pepper cultivars Camelot, Lafayette, Sirius, and Stiletto were grown at 0%, 30%, 47%, 62%, and 80% shade levels. Photosynthetically active radiation and air, leaf, and root zone temperatures decreased as shade level increased. Despite having increased plant leaf area, there was increased soil water content with increased shade level, indicating reduced soil water use. With increased shade level, the total plant leaf area, individual leaf area, and individual leaf weight increased, whereas leaf number per plant and specific leaf weight decreased. In contrast to non-normalized chlorophyll index (CI) values, CI normalized by specific leaf weight were related to leaf nitrogen (N) and increased with increased shade level. Net photosynthesis and stomatal conductance (gS) decreased and leaf transpiration increased with increased shade level, particularly above 47% shade level. Leaf concentrations of N, potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), sulfur (S), aluminum (Al), and boron (B) increased with increased shade level. Relatively few differences in plant growth, leaf gas exchange, and leaf mineral nutrient concentrations were observed among cultivars. In conclusion, morphological changes such as taller plants and thinner and larger leaves likely enhanced light capture under shaded conditions compared with unshaded plants. High shade levels reduced leaf temperature and excessive leaf transpiration but resulted in reduced leaf photosynthesis. Thus, moderate shade levels (30% and 47%) were the most favorable for bell pepper plant growth and function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call