Abstract
The categorization of quantum states for composite systems as either separable or entangled, or alternatively as Bell local or Bell non-local states based on local hidden variable theory is outlined, focusing on simple bipartite systems. The significance of states demonstrating Bell non-locality for settling the long standing controversy between the Copenhagen interpretation of the quantum measurement process involving “collapse of the wave-function” and the alternative interpretation based on pre-existing hidden variables is emphasized. Although experiments demonstrating violations of Bell locality in microscopic systems have now been carried out, there is current interest in finding Bell non-locality in quantum systems on a macroscopic scale, since this is a regime where a classical hidden variable theory might still apply. Progress towards finding macroscopic quantum states that violate Bell inequalities is reviewed. A new test for Bell non-locality that applies when the sub-system measured quantities are spin components with large outcomes is described, and applied to four mode systems of identical massive bosons in Bose-Einstein condensates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.