Abstract
In this Letter, we study the quantum nature of non-Bunch–Davies states in de Sitter space by evaluating CHSH inequality on a localized two-atom system. We show that quantum nonlocality can be generated through the Markovian evolution of two-atom, witnessed by a violation of CHSH inequality on its final equilibrium state. We find that the upper bound of inequality violation is determined by different choices of de Sitter-invariant vacua sectors. In particular, with growing Gibbons–Hawking temperature, the CHSH bound degrades monotonously for Bunch–Davies vacuum sector. Due to the intrinsic correlation of non-Bunch–Davies vacua, we find that the related violation of inequality can however drastically increase after certain turning point, and may persist for arbitrarily large environment decoherence. This implies that the CHSH inequality is useful to classify the initial quantum state of the Universe. Finally, we clarify that the witnessed intrinsic correlation of non-Bunch–Davies vacua can be utilized for quantum information applications, e.g., surpassing the Heisenberg uncertainty bound of quantum measurement in de Sitter space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.