Abstract

We characterize belief-free equilibria in infinitely repeated games with incomplete information with N \ge 2 players and arbitrary information structures. This characterization involves a new type of individual rational constraint linking the lowest equilibrium payoffs across players. The characterization is tight: we define a set of payoffs that contains all the belief-free equilibrium payoffs; conversely, any point in the interior of this set is a belief-free equilibrium payoff vector when players are sufficiently patient. Further, we provide necessary conditions and sufficient conditions on the information structure for this set to be non-empty, both for the case of known-own payoffs, and for arbitrary payoffs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.