Abstract
Among the computational intelligence techniques employed to solve classification problems, the fuzzy rule-based classification system (FRBCS) is a popular tool capable of building a linguistic model interpretable to users. However, it may face lack of accuracy in some complex applications, by the fact that the inflexibility of the concept of the linguistic variable imposes hard restrictions on the fuzzy rule structure. In this paper, we extend the fuzzy rule in FRBCS with a belief rule structure and develop a belief rule-based classification system (BRBCS) to address imprecise or incomplete information in complex classification problems. The two components of the proposed BRBCS, i.e., the belief rule base (BRB) and the belief reasoning method (BRM), are designed specifically by taking into account the pattern noise that existes in many real-world data sets. Four experiments based on benchmark data sets are carried out to evaluate the classification accuracy, robustness, interpretability and time complexity of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.