Abstract

Abstract Within the framework of evidence theory, data fusion consists in obtaining a single belief function by the combination of several belief functions resulting from distinct information sources. The most popular rule of combination, called Dempster's rule of combination (or the orthogonal sum), has several interesting mathematical properties such as commutativity or associativity. However, combining belief functions with this operator implies normalizing the results by scaling them proportionally to the conflicting mass in order to keep some basic properties. Although this normalization seems logical, several authors have criticized it and some have proposed other solutions. In particular, Dempster's combination operator is a poor solution for the management of the conflict between the various information sources at the normalization step. Conflict management is a major problem especially during the fusion of many information sources. Indeed, the conflict increases with the number of information sources. That is why a strategy for re-assigning the conflicting mass is essential. In this paper, we define a formalism to describe a family of combination operators. So, we propose to develop a generic framework in order to unify several classical rules of combination. We also propose other combination rules allowing an arbitrary or adapted assignment of the conflicting mass to subsets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.