Abstract
Burning coal tips and the debris slides induced by this combustion are a potential danger for local residents and visitors, and a method is required to identify areas of susceptibility. The relatively easy circulation of air, enhanced by the poor compaction of the spoil heaps, and the exothermic reaction of pyrite with oxygen may ignite coal tips. Rainwater infiltration and subsequent evaporation inside burning coal tips may create steam pressure, which, combined with humidity and slope steepness can then trigger landsliding. Based on mapping of debris slides and susceptibility factors such as burning (represented by positive surface temperature anomalies on thermographic imagery) and slope gradient, this study aims to define thresholds for debris slide susceptibility on coal tips and to map potential debris slide source areas on spoil heaps. The Belgian coal tips were used as study area. A DTM as well as ASTER Kinetic Surface Temperature products were used to measure slope gradients and temperature anomaly. Locations with typical characteristics of combustion (heat, red soil colour, steam and gasses), and debris slides were recorded in the field, and were used to identify thresholds beyond which debris sliding is generally observed: a temperature anomaly of > 0.5 K, when comparing the debris slide areas to the average temperature of the coal tip, and a slope gradient a >= 28 degrees. The susceptibility zones for debris slide detachment were mapped by considering the imagery pixels that exceeded the thresholds for temperature and slope gradient; the results fitted well when compared with the observed debris slides. The method can be improved by using more coal tips for calibration, and by taking into account rain depth and slope aspect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.