Abstract

We show that the use of suitable theorems for black hole formation in Friedmann expanding universes leads to a modification of the Bekenstein–Hawking entropy. By adopting an argument similar to the original Bekenstein one, we write down the expression for the Bekenstein–Hawking entropy suitable for non-static isotropic expanding universes together with the equation of state of a black hole. This equation can be put in a form similar to the one of an ideal gas but with a factor depending on the Hubble radius. Moreover, we give some argument on a possible relation between our entropy expression and the Cardy–Verlinde one. Finally, we explore the possibility that primordial inflation is due to black hole evaporation in our context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.