Abstract

The deployment of proton exchange membrane fuel cell (PEMFC) for aeronautic applications is a value-added energy supply alternative that not only generates useful byproducts (oxygen-depleted air, water and heat) but addresses sensitive issues such as improving health conditions of airport personnel (silent operation minimizes noise) and decreasing greenhouse gas emission (in situ zero emissions). However, the PEMFC is yet to be industrialized due to its fast degrading components. The contribution of the several start-ups and shutdowns (a PEMFC undergoes when operated in aircraft) to the degradation is not well-understood. Hence, this study seeks to explore the effects of start-up/shutdown (SU/SD) cycling on a PEMFC’s lifetime. The SU/SD cycling is incorporated with heating to 60 °C and cooling to room temperature to mimic real-life temperature changes encountered in an aircraft. The tested membrane electrode assemblies (MEAs) were characterised for performance and evolution of its components to examine the extent and nature of degradation. More than two-thirds loss of electrochemically active surface area (ECSA) of catalyst, Pt particle growth (4.71–6.41 nm) associated with Ostwald ripening and formation of PtO from adsorption of OH− by Pt–M surface were identified to be causes of the observed voltage decay at 0.196 mV h−1 rate. Hence, it is concluded that SU/SD cycling mostly affects the catalytic component of PEMFC in the aeronautic environment.

Highlights

  • The proton exchange membrane fuel cell (PEMFC) is a device that operates silently and comprises of solid electrolyte and no moving parts [1, 2]

  • The fuel cell was subjected to 600 SU/SD cycles that took 120 min each and the voltage measured at 400 mA cm−2 decreased from 0.3359–0.1003 V, with a degradation rate of 0.196 mV h−1

  • The IV curve of a pristine membrane electrode assemblies (MEAs) recorded prior to the test is regarded as beginning of life (BoL)

Read more

Summary

Introduction

The PEMFC is a device that operates silently and comprises of solid electrolyte and no moving parts [1, 2]. The PEMFC converts chemical energy from the electrochemical reaction of oxygen and hydrogen into electrical while emitting heat, oxygen-depleted air (ODA) and water as byproducts. These byproducts have useful functions in aircrafts, such as de-icing wing and heating water using emitted heat, fire retardation with the ODA and water generation on board [3]. The PEMFC is an auxiliary power unit (APU) that powers small electrical systems on-board such. Leading aircraft manufacturers are working on PEMFC-powered propulsions and APUs as part of establishing “more-electric airplanes” [1, 6]. PEMFC is tested for various aeronautic applications, ranging from nose wheel drive motor, hybrid with batteries, exclusively powering small manned aircrafts to emergency power systems [8,9,10,11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.